If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2=68
We move all terms to the left:
t^2-(68)=0
a = 1; b = 0; c = -68;
Δ = b2-4ac
Δ = 02-4·1·(-68)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{17}}{2*1}=\frac{0-4\sqrt{17}}{2} =-\frac{4\sqrt{17}}{2} =-2\sqrt{17} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{17}}{2*1}=\frac{0+4\sqrt{17}}{2} =\frac{4\sqrt{17}}{2} =2\sqrt{17} $
| h/3=58 | | 2h-3=3h+6 | | -6(v-7)=90 | | 4+5^(6-x)=15 | | -8x-4-2x=-10 | | -15k=-60 | | h=h/9 | | 1/3(3x-12)=4x+8 | | 9x+14=11x+4 | | 4x-3=5x-38 | | w/6=11/15 | | x/4=12.6 | | -38=11x=127 | | 2/3(x+3)=-12 | | 95=0.85x | | 2x+8+3x+4+4x-3=180 | | 2/5k=9 | | 95=85x | | 19+13x=26 | | 5/7x=63/7 | | 12x+1914=13x+1 | | 5k+2=9k–6 | | 12+15x=1/2x-60 | | -119=7(2r-1) | | 10=11n-n | | 12.5-4m=-2m-3.5 | | x12=3x | | 24+8x=85 | | 24+x=85 | | -6(a-8)=96 | | 18+4w=6w | | 4y+7=6y+1 |